

Presentation Outline

- System Constraints
- How Water Flows into Everglades National Park
- Overview of Phosphorus Trends in the Everglades
- The Changing System with Mod Waters & CEPP

Symbol

Constraint

2008 LORS

Structure Capacity

Canal Conveyance

Species protection

STA Treatment Capability

Pump Capacity

STA 5 / 6 Connectivity

Wildlife Management Area

Water Level Limitation (Tree Island & Wildlife)

LEC Canal Conveyance

Levee Safety

Flow Limitation

Flood Risk (G3273, SDCS)

Phosphorus Requirements for the Everglades Protection Area

- Maintenance of state water quality standards is crucial to the ecology of the WCAs and Everglades National Park
- Legal requirements to reduce phosphorus levels in discharges and achieve water quality standards
 - 1992 (and amendments) Settlement Agreement/Consent Decree (Appendix A/B)

ട്ടിസ്തല് മുത

- 1994 (and amendments) Everglades Forever Act
 - Numeric phosphorus criterion throughout the EPA marsh/ WQBELS

Phosphorus Requirements for the Everglades Protection Area

- Projects to achieve and maintain water quality standards
 - EAA & C-139 BMP Program (from 1996)
 - STAs (1994 2012)
 - Restoration Strategies Expanded STA/FEB (from 2013)
- Integration with Federal projects (Modified Water Deliveries) and CERP projects (CEPP)

Settlement Agreement & State Phosphorus Requirements

- WCA-1 (Refuge)
 - Settlement Agreement Appendix B, and
 - State Phosphorus Rule (10 ppb)
- WCA-2 & WCA-3
 - Settlement Agreement does not apply
 - State Phosphorus Rule (10 ppb)
- Everglades National Park
 - Settlement Agreement Appendix A (Appendix A limit also adopted in state phosphorus rule)

Phosphorus Trends in the Everglades Protection Area

Overview

Northern
Water Conservation
Areas

Water Conservation Areas

Everglades National Park

- · Shark River Slough
- Taylor Slough/Coastal Basins

Everglades National Park

- · Shark River Slough
- · Taylor Slough/Coastal Basins

Inflows to the Northern **Water Conservation Areas**

Water Conservation Area 1 (Refuge) Inflow Phosphorus Concentration Trends

FWMC – flow weighted mean concentration BMPs – Best Management Practices

Water Conservation Area 2A Inflow Phosphorus Concentration Trends

Water Conservation Area 3A Inflow Phosphorus Concentration Trends

Phosphorus Trends in the Everglades Protection Area

Overview

Northern
Water Conservation
Areas

Water Conservation Areas

Everglades National Park

- · Shark River Slough
- Taylor Slough/Coastal Basins

Everglades National Park

- · Shark River Slough
- · Taylor Slough/Coastal Basins

Interior Marsh
Concentration Trends

Water Conservation Areas Marsh Phosphorus Trends

- WCA-1 (Refuge)
 - Settlement Agreement, Appendix B
 - Long-term Limit: Concentration varies with Stage (inverse relationship)
 - Achievement:
 - Varies 7.2 ppb 17.6 ppb (geometric mean)
 - No more than 1 in 12 months can exceed limit

All WCAs

- State Phosphorus Rule
 - "Impacted" and "Un-impacted" network of sites (separately assessed)
 - Long-term Criterion: 4-Part Test
 - Achievement in each WCA:
 - Do not exceed 5-yr average 10 ppb (geometric mean)
 - Do not exceed 3 other spatial / temporal related tests

Water Conservation Area 1 (Refuge) Settlement Agreement – App. B / Interior Marsh Trends

TP concentrations from 14 Interior Refuge marsh sites used to determine Appendix B achievement

WCA-1 (Refuge) State TP Rule / Interior Marsh Trends

2010 - 2014 Network Average

- Impacted
 5-yr GM = 18 ppb
 Range = 15 24 ppb
- Un-Impacted5-yr GM = 7 ppbRange = 7 8 ppb

WCA-2A State TP Rule / Interior Marsh Trends

2010 - 2014 Network Average

- Impacted5-yr GM = 20 ppbRange = 15 24 ppb
- Un-Impacted5-yr GM = 6 ppbRange = 5 6 ppb

WCA-3A State TP Rule / Interior Marsh Trends

2010 - 2014 Network Average

- Impacted
 5-yr GM = 15 ppb
 Range = 10 31 ppb
- Un-Impacted5-yr GM = 6 ppbRange = 4 6 ppb

Phosphorus Trends in the Everglades Protection Area

Overview

Northern
Water Conservation
Areas

Water Conservation Areas

Everglades National Park

- Shark River Slough
- Taylor Slough/Coastal Basins

Everglades National Park

- · Shark River Slough
- · Taylor Slough/Coastal Basins

Shark River Slough Appendix A – Inflow Phosphorus Trends

FWMC – flow weighted mean concentration

Taylor Slough & Coastal Basins Appendix A – Inflow Phosphorus Trends

FWMC – flow weighted mean concentration

Phosphorus Trends in the Everglades Protection Area

Overview

Northern
Water Conservation
Areas

Water Conservation Areas

Everglades National Park

- · Shark River Slough
- Taylor Slough/Coastal Basins

Everglades National Park

- Shark River Slough
- Taylor Slough/Coastal Basins

Everglades National Park Marsh Phosphorus Trends

2010 - 2014 Network Average

Shark River Slough

Un-Impacted5-yr GM = 6 ppbRange = 4 - 7 ppb

Taylor Slough/Coastal Basins

Un-Impacted5-yr GM = 4 ppbRange = 3 - 5 ppb

stumel.gov

Conclusions and Path Forward

- Inflow TP is low, yet sensitive to hydrology, wet/dry seasons and climatic cycles
- TP also varies with flow type (marsh vs canal), location (western vs eastern SRS) and volume (increases in drier periods)
- Even small variations in TP can be important when limit is very low
- Recognize the system will continue to change over time
- Evaluation underway to consider hydrologic variability, changes in delivery system, and measurement uncertainty

